Rabu, 08 Oktober 2014

KODE ASCII


KODE ASCII 






Kode Standar Amerika untuk Pertukaran Informasi atau ASCII (American Standard Code for Information Interchange) merupakan suatu standar internasional dalam kode huruf dan simbol seperti Hex dan Unicode tetapi ASCII lebih bersifat universal, contohnya 124 adalah untuk karakter "|". Ia selalu digunakan oleh komputer dan alat komunikasi lain untuk menunjukkan teks. Kode ASCII sebenarnya memiliki komposisi bilangan biner sebanyak 7 bit. Namun, ASCII disimpan sebagai sandi 8 bit dengan menambakan satu angka 0 sebagai bit significant paling tinggi. Bit tambahan ini sering digunakan untuk uji prioritas. Karakter control pada ASCII dibedakan menjadi 5 kelompok sesuai dengan penggunaan yaitu berturut-turut meliputi logical communication, Device control, Information separator, Code extention, dan physical communication. Code ASCII ini banyak dijumpai pada papan ketik (keyboard) computer atau instrument-instrument digital.
Jumlah kode ASCII adalah 255 kode. Kode ASCII 0..127 merupakan kode ASCII untuk manipulasi teks; sedangkan kode ASCII 128..255 merupakan kode ASCII untuk manipulasi grafik. Kode ASCII sendiri dapat dikelompokkan lagi kedalam beberapa bagian:
  • Kode yang tidak terlihat simbolnya seperti Kode 10(Line Feed), 13(Carriage Return), 8(Tab), 32(Space)
  • Kode yang terlihat simbolnya seperti abjad (A..Z), numerik (0..9), karakter khusus (~!@#$%^&*()_+?:”{})
  • Kode yang tidak ada di keyboard namun dapat ditampilkan. Kode ini umumnya untuk kode-kode grafik.
Dalam pengkodean kode ASCII memanfaatkan 8 bit. Pada saat ini kode ASCII telah tergantikan oleh kode UNICODE (Universal Code). UNICODE dalam pengkodeannya memanfaatkan 16 bit sehingga memungkinkan untuk menyimpan kode-kode lainnya seperti kode bahasa Jepang, Cina, Thailand dan sebagainya.
Pada papan keyboard, aktifkan numlock, tekan tombol ALT secara bersamaan dengan kode karakter maka akan dihasilkan karakter tertentu. Misalnya: ALT + 44 maka akan muncul karakter koma (,). Mengetahui kode-kode ASCII sangat bermanfaat misalnya untuk membuat karakter-karakter tertentu yang tidak ada di keyboard.

BIG THANKS FOR
http://id.wikipedia.org/wiki/ASCII
http://mustofa1307.wordpress.com/2012/08/14/4/kode-ascii-2/
 

GERBANG LOGIKA



Gerbang logika merupakan dasar pembentukan sistem digital. Gerbang logika
beroperasi dengan bilangan biner, sehingga disebut juga gerbang logika biner.
Tegangan yang digunakan dalam gerbang logika adalah TINGGI atau RENDAH. Tegangan
tinggi berarti 1, sedangkan tegangan rendah berarti 0.
1. Gerbang AND
Gerbang AND digunakan untuk menghasilkan logika 1 jika semua masukan
mempunyai logika 1, jika tidak maka akan dihasilkan logika 0.

Tabel Kebenaran AND
Pernyataan Boolean untuk Gerbang AND
A . B = Y (A and B sama dengan Y )
2. Gerbang NAND (Not AND)
Gerbang NAND akan mempunyai keluaran 0 bila semua masukan pada logika 1. sebaliknya jika ada sebuah logika 0 pada sembarang masukan pada gerbang NAND, maka
keluaran akan bernilai 1.
3. Gerbang OR
Gerbang OR akan memberikan keluaran 1 jika salah satu dari masukannya pada
keadaan 1. jika diinginkan keluaran bernilai 0, maka semua masukan harus dalam keadaan 0.
4. Gerbang NOR
Gerbang NOR akan memberikan keluaran 0 jika salah satu dari masukannya pada
keadaan 1. jika diinginkan keluaran bernilai 1, maka semua masukannya harus dalam keadaan 0.
 5. Gerbang XOR
Gerbang XOR (dari kata exclusive OR) akan memberikan keluaran 1 jika masukan-
masukannya mempunyai keadaan yang berbeda.
6. Gerbang NOT
Gerbang NOT adalah gerbang yang mempunyai sebuah input dan sebuah output.
Gerbang NOT berfungsi sebagai pembalik (inverter), sehingga output dari gerbang ini
merupakan kebalikan dari inputnya.





BIG THANKS
http://jerryandihika.blogspot.com/2013/01/gerbang-logika-dasar.html

Rabu, 01 Oktober 2014

SISTEM BILANGAN BCD dan OPERASI ARITMATIKA

Bismillahirrohmaanirrohiim...
 

SISTEM BILANGAN BCD dan OPERASI ARITMATIKA


SISTEM BILANGAN BCD adalah sistem pengkodean bilangan desimal yang metodenya mirip dengan bilangan biner biasa; hanya saja dalam proses konversi, setiap simbol dari bilangan desimal dikonversi satu per satu, bukan secara keseluruhan seperti konversi bilangan desimal ke biner biasa. Hal ini lebih bertujuan untuk “menyeimbangkan” antara kurang fasihnya manusia pada umumnya untuk melakukan proses konversi dari desimal ke biner -dan- keterbatasan komputer yang hanya bisa mengolah bilangan biner. Untuk lebih jelas, dapat dilihat pada contoh berikut :
Misalkan bilangan yang ingin dikonversi adalah 17010.dapat dilihat bahwa bilangan biner dari :
110—-> 00012
710—-> 01112
010—-> 00002
Tetapi, berhubung hasil yang diinginkan adalah bilangan BCD, maka basis bilangannya tinggal ditulis sebagai berikut :
110—-> 0001BCD
710—-> 0111BCD
010—-> 0000BCD
maka, nilai BCD dari 17010 adalah 0001 0111 0000BCD.
Harap diperhatikan bahwa setiap simbol dari bilangan desimal dikonversi menjadi 4 bit bilangan BCD.
Contoh lain, misalkan bilangan yang ingin dikonversi adalah 30910.
310—–> 0011BCD
010—–> 0000BCD
910 —–> 1001BCD
maka, nilai BCD dari 30910 adalah 0011 0000 1001BCD

Operasi aritmatika seperti penjumlahan pada bilangan desimal adalah biasa bagi kita, tetapi bagaimana dengan operasi penjumlahan pada bilangan biner? Pada bilangan biner yang hanya terdiri dari dua sistem bilangan (‘0’ dan ‘1’), tentu-nya operasi penjumlahan terhadap bilangan biner akan lebih sederhana, contoh:
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10
1 + 1 + 1 = 11
Sama hal-nya seperti pada operasi aritmatika penjumlahan pada bilangan desimal dimana bila ada hasil penjumlahan yang hasilnya dua digit, maka angka paling sebelah kiri akan dijumlahkan pada bilangan berikutnya atau dikenal dengan istilah ‘Disimpan’. Sebagai contoh perhatikan penjumlahan bilangan biner berikut ini.
              11  1   ←  (disimpan)  →   1
010101       1001001                 001101
100010       0011001                 100001
------(+)    -------(+)              ------(+)
110111       1100010                 101110
Operasi Pengurangan Bilangan Biner
Operasi aritmatika pengurangan pada bilangan biner juga sama seperti operasi pengurangan pada bilangan desimal, sebagai contoh perhatikan operasi dasar pengurangan bilangan biner berikut ini.
0 – 0 = 0
1 – 0 = 1
0 – 1 = 1 → bit ‘0’ meminjam 1 dari bit di sebelah kiri-nya
1 – 1 = 0
Contoh: Pengurangan 37 - 17 = 20 (desimal) atau 100101 - 010001 = 010100 (biner)
 1 → pinjam
100101 = 37
010001 = 17
-----------(-)
010100 = 20
Untuk menyatakan suatu bilangan desimal yang bernilai negatif adalah dengan menambahkan tanda negatif (-) pada bilangan-nya, contoh -1, -2, -3, -4, -5 dan seterusnya. Tetapi pada bilangan biner ini tidak bisa dilakukan, lalu bagaimana untuk membuat atau membedakan suatu bilangan biner itu bernilai negatif (-).
Ada beberapa cara untuk membuat suatu bilangan biner bernilai negatif, cara yang pertama adalah dengan menambahkan ekstra bit pada bagian paling sebelah kiri bilangan (Most Significant Bit / MSB), contoh;
101 = +5
Dengan menambahkan ekstra bit:
0101 = +5 → 0 merupakan ekstra bit (MSB) untuk tanda positif (+)
1101 = -5 → 1 merupakan ekstra bit (MSB) untuk tanda negatif (-)
Cara seperti di atas ternyata dapat menimbulkan salah persepsi jika kita tidak cermat, karena nilai -5 = 1101, 1101 dapat diartikan juga sebagai bilangan 13 dalam bilangan desimal. Maka digunakan cara kedua yaitu menggunakan satu metode yang dinamakan ‘Komplemen Dua’. Komplemen dua merupakan komplemen satu (yaitu dengan merubah bit ‘0’ menjadi ‘1’ dan bit ‘1’ menjadi ‘0’) kemudian ditambah satu, contoh;
0101 = +5 → ubah ke bentuk komplemen satu
1010 → komplemen satu dari 101 ini kemudian ditambahkan 1
   1
----(+)
1111 → ini merupakan bentuk komplemen dua dari 0101 yang bernilai -5
Contoh lain, berapakah nilai -7 pada bilangan biner?
0111 = +7
1000 → bentuk komplemen satu
   1
----(+)
1001 → bentuk komplemen dua dari 0111 yang bernilai -7
Berikut tabel dari perbandingan bilangan biner original dengan bilangan biner dalam bentuk komplemen dua.

Sedangkan contoh untuk operasi pengurangan menggunakan metode komplemen dua sebenarnya adalah operasi penjumlahan bilangan biner, perhatikan contoh berikut.
Contoh; hasil penjumlahan +6 + (– 4) = 2 (desimal), bagaimana jika dalam operasi penjumlahan bilangan biner (komplemen dua)?
Jawab: Pertama kita cari bentuk komplemen dua dari +4

0100 = +4
1011 → komplemen satu dari 1100
   1
----(+)
100 → komplemen dua dari 100

Lalu jumlahkan +6 = 110 dengan -4 = (100)

110
100
---(+)
010 = +2 → hasil penjumlahan 110 (+6) dengan 100 (-4)
Yang perlu diperhatikan dari operasi pengurangan bilangan biner menggunakan metode komplemen dua adalah jumlah bit-nya. Pada contoh di atas semua operasi pengurangan menggunakan bilangan biner 3 bit (bit = binary digit), maksudnya disini adalah jika bilangan biner yang dihitung merupakan bilangan biner 3 bit maka hasilnya harus 3 bit. Seperti pada pengurangan 110 dengan 100 dimana pada digit paling sebelah kiri (MSB) pada kedua bilangan biner yakni ‘1’ dan ‘1’ jika dijumlahkan hasilnya adalah ‘10’ tetapi hanya digit ‘0’ yang digunakan dan digit ‘1’ diabaikan.
1
 110
 100
----(+)
1010 → ‘1’ pada MSB diabaikan pada operasi pengurangan biner komplemen dua
Contoh lain hasil pengurangan bilangan desimal 3 – 5 = -2 jika dalam biner.
11
011 → bilangan biner +3
011 → komplemen dua bernilai -5
---(+)
110 → hasilnya = -2 (komplemen dua dari +2)
Untuk mengetahui apakah 110 benar-benar merupakan nilai komplemen dua dari +2 cara-nya sama seperti kita merubah dari biner positif ke biner negatif menggunakan metode komplemen dua. Perhatikan operasi-nya berikut ini.
110 = -2
001 → komplemen satu dari 110
  1
---(+)
010 → komplemen dua dari 110 yang bernilai +2
Dari contoh semua operasi perhitungan di atas dapat ditarik kesimpulan bahwa komplemen dua dapat digunakan untuk mengetahui nilai negatif dan nilai positif pada operasi pengurangan bilangan biner.
Operasi Perkalian Bilangan Biner
Sama seperti operasi perkalian pada bilangan desimal, operasi aritmatika perkalian bilangan biner pun menggunakan metode yang sama. Contoh operasi dasar perkalian bilangan biner.
0 x 0 = 0
0 x 1 = 0
1 x 0 = 0
1 x 1 = 1
Contoh perkalian 12 x 10 = 120 dalam desimal dan biner.
Dalam operasi bilangan desimal;

 12
 10
 ---(x)
 00
12
----(+)
120

Dalam operasi bilangan biner;

   1100 = 12
   1010 = 10
   ----(x)
   0000
  1100
 0000
1100
-------(+)
1111000 = 120
Operasi Pembagian Bilangan Biner
Operasi aritmatika pembagian bilangan biner menggunakan prinsip yang sama dengan operasi pembagian bilangan desimal dimana di dalamnya melibatkan operasi perkalian dan pengurangan bilangan.
Contoh pembagian 9 : 3 = 3 (desimal) atau 1001 : 11 = 11 (biner)
     ____
11 / 1001 \ 11 → Jawaban
      11
      ---(-)
       11
       11
       ---(-)
        0
Contoh pembagian 42 : 7 = 6 (desimal) atau 101010 : 110 = 111 (biner)
     _______
110 / 101010 \ 111 → Jawaban
       110
       ------(-)
        1001
         110
        ------(-)
          110
          110
          ----(-)
            0


BIG THANKS FOR
http://ramaresistor.blogspot.com/2012/04/sistem-bilangan-bcd-dan-operasi.html

Contoh
Konversikan dari desimal ke heksadesimal 06029619

jawab:
6029619/16    376851    sisa 3
376851/16      23553      sisa 3
23553/16        1472        sisa 1
1472/16          92            sisa 0
92/16              5              sisa 12 (C)
5/16                0              sisa 5

Jadi 06029619 (10) = 5C0133 (16)